Equation différentielle 1er ordre

Homogène (sans second membre)

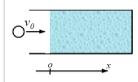
$$\frac{dy}{dt} + ay = 0 \qquad \text{avec} \quad a = cte$$

$$\underline{\mathsf{Solution}}: y = y_0 e^{-at}$$

 y_0 est déterminée par les conditions intitiales

Exemple:

Exemple 1: un objet se déplace suivant Ox avec une vitesse initiale v_0 . En x=0 il subit une force de frottement fluide en régime laminaire qui le ralentit. Quelle est l'expression de la vitesse en fonction du temps lors de la phase de ralentissement. (on néglige ici la pesanteur)



$$2^{\text{nd}}$$
 loi de Newton: $m a = F_f$

On projette sur Ox: $m \ a = -K\eta \ v$ ou encore $a = -\lambda v$ avec $\lambda = K\eta/m$

Nous avons alors l'équation suivante:

$$a(t) = \frac{dv(t)}{dt} = -\lambda v(t)$$
 Equation différentielle du 1^{er} ordre

Résolution:
$$\int_{v_0}^{v(t)} \frac{dv}{v} = -\lambda \int_0^t dt \quad \Rightarrow \ [ln(v(t) - ln(v_0))] = -\lambda [t - 0]$$

$$ln \frac{v(t)}{v_0} = -\lambda t \quad \stackrel{exp}{\Rightarrow} e^{ln \frac{v(t)}{v_0}} = e^{-\lambda t} \Rightarrow \frac{v(t)}{v_0} = e^{-\lambda t}$$

Et finalement:
$$v(t) = v_0 e^{-\lambda t}$$

Equation:
$$\frac{dv}{dt} + \lambda v = 0$$

Solution :
$$v = v_0 e^{-\lambda t}$$

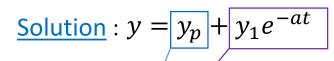
Détermination de v_{θ} :

$$v(t=0)=v_0$$

Equation différentielle 1er ordre

Avec second membre

$$\frac{dy}{dt} + ay = b \qquad \text{avec} \quad a \text{ et } b = cte$$



solution particulière déterminée pour t→∞ solution générale de l'équation différentielle sans second membre (b=0) y_I est une constante déterminée par les conditions initiales

Exemple:

Exemple 2: chute libre (suite)

Equation différentielle:
$$\frac{dv(t)}{dt} + \lambda v(t) - g = 0$$
 avec $v(t) = v_{lim}(t \rightarrow \infty) + v_l e^{-\lambda t}$

• On injecte
$$v(t)$$
 dans l'équation
$$\frac{dv(t)}{dt} + \lambda v(t) - g = 0$$
 on trouve
$$-\lambda v_l e^{-\lambda t} + \lambda v_{lim} + \lambda v_l e^{-\lambda t} - g = 0 \implies v_{lim} = g/\lambda$$

$$d'où v(t) = g/\lambda + v_l e^{-\lambda t}$$

• On détermine v_i avec la condition initiale $v(t=0) = 0 \implies v_i = -g/\lambda$

La vitesse en fonction de t s'écrit $v(t) = g/\lambda(1 - e^{-\lambda t})$

Equation:
$$\frac{dv}{dt} + \lambda v = g$$

Solution :
$$v = v_p + v_1 e^{-\lambda t}$$

Détermination de
$$v_p$$
 : $v(t \rightarrow \infty) = v_p = v_{lim}$

Détermination de
$$v_I$$
: $v(t=0) = v_p + v_I$

$$v_1 = v(t=0) - v_p$$